A mutation within the β subunit of Escherichia coli RNA polymerase impairs transcription from bacteriophage T4 middle promoters.
نویسندگان
چکیده
During infection of Escherichia coli, bacteriophage T4 usurps the host transcriptional machinery, redirecting it to the expression of early, middle, and late phage genes. Middle genes, whose expression begins about 1 min postinfection, are transcribed both from the extension of early RNA into middle genes and by the activation of T4 middle promoters. Middle-promoter activation requires the T4 transcriptional activator MotA and coactivator AsiA, which are known to interact with σ(70), the specificity subunit of RNA polymerase. T4 motA amber [motA(Am)] or asiA(Am) phage grows poorly in wild-type E. coli. However, previous work has found that T4 motA(Am)does not grow in the E. coli mutant strain TabG. We show here that the RNA polymerase in TabG contains two mutations within its β-subunit gene: rpoB(E835K) and rpoB(G1249D). We find that the G1249D mutation is responsible for restricting the growth of either T4 motA(Am)or asiA(Am) and for impairing transcription from MotA/AsiA-activated middle promoters in vivo. With one exception, transcription from tested T4 early promoters is either unaffected or, in some cases, even increases, and there is no significant growth phenotype for the rpoB(E835K G1249D) strain in the absence of T4 infection. In reported structures of thermophilic RNA polymerase, the G1249 residue is located immediately adjacent to a hydrophobic pocket, called the switch 3 loop. This loop is thought to aid in the separation of the RNA from the DNA-RNA hybrid as RNA enters the RNA exit channel. Our results suggest that the presence of MotA and AsiA may impair the function of this loop or that this portion of the β subunit may influence interactions among MotA, AsiA, and RNA polymerase.
منابع مشابه
Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters.
Development of bacteriophage T4 in Escherichia coli requires the sequential recognition of three classes of promoters: early, middle, and late. Recognition of middle promoters is known to require the motA gene product, a protein that binds specifically to the "Mot box" located at the -30 region of these promoters. In vivo, the asiA gene product is as critical for middle mode RNA synthesis as is...
متن کاملVisualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase
The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), w...
متن کاملDefining a bacteriophage T4 late promoter: bacteriophage T4 gene 55 protein suffices for directing late promoter recognition.
The RNA polymerase from bacteriophage T4-infected Escherichia coli, which specifically initiates transcription at phage T4 late promoters, is extensively modified by ADP-ribosylation of core subunits and by binding several virus-encoded subunits. We show here that one of these subunits, the phage T4 gene 55 protein, designated gp55, alone endows unmodified RNA polymerase core enzyme from uninfe...
متن کاملStimulation of bacteriophage T4 middle transcription by the T4 proteins MotA and AsiA occurs at two distinct steps in the transcription cycle.
The bacteriophage T4 encodes proteins that are responsible for tightly regulating mRNA synthesis throughout phage development in Escherichia coli. The three classes of T4 promoters (early, middle, and late) are utilized sequentially by the host RNA polymerase as a result of phage-induced modifications. One such modification is the tight binding of the T4 AsiA protein to the sigma70 subunit of t...
متن کاملThe bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase.
Transcription of bacteriophage T4 late genes requires concomitant DNA replication. T4 late promoters, which consist of a single 8-bp -10 motif, are recognized by a holoenzyme containing Escherichia coli RNA polymerase core and the T4-encoded promoter specificity subunit, gp55. Initiation of transcription at these promoters by gp55-holoenzyme is inefficient, but is greatly activated by the DNA-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 192 21 شماره
صفحات -
تاریخ انتشار 2010